
AD-A266 965 lie
!Iillhl~II/I III I1I111111 III I 111 s111

IR - RAT

Infrared Remote Activity Transceiver
Universal Model

William Sands, Robert Thibadeau, Drew Anderson
Imaging Systems Laboratory

April, 1993
CMU-RI-TR-93-12

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 O T IC
A ELECTE

JUL 13 1993 U

Copyright © 1993 William Sands, Robert Thibadeau, Drew Anderson

This research was partially sponsored by the Defense Advanced Research Projects
Agency (DOD) ARPA order 6873, under contract #MDA972-92-J-1010. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

Approved for public relew93
f i tnib liji, n U nlim ited962' 12 022

L --1" " tl IForm Approved

REPORT DOCUMENTATION PAGE OMr No. 0704-01

Pufigc teooromg burcen for !"s c., econ of nformation is estimated !o aieraqe I "ur oer -,,o se. ,nc,6.dorrq tp'e te ,Or reviewinq nstrucOtins. ýear:m-mg ev st P- cata sources
gatheerinq and mamntainrn the o•ta needed. and corrpietng and r hesemr' ",e colec~cn of inocrmation Send comments re,•arahnq this burOen estimate or an-v ot•er •s•ect of this
collection of •niormatiOn. ficiudirl suggestion%• or reducing t•is ouruen to Washir,;ton -iewauaryers Seriice,. olreWorate for normation Ooeration$ and Qfehocrs, 125 i efseerson
Oavis Highway. Suite 1204. Artigton. ý A 22202-4302. and to the Office of Management and Suaget, Plioermori Reducion Project (0704-0188). WAashingon. DC 2,S03

1. AGENCY USE ONLY (Leave blank) 2. RE PORT DATE 3.* REPORT TYPE AND DATES COVERED

I April 1993 I otechnical
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

IR-RAT: Infrared Remote Activity Transceiver MDA972-92-J-l0lO
Universal Model

6. AUTHOR(S)

William Sands, Robert Thibadeau, and Drew Anderson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RI-TR-93-12
Pittsburgh, PA 15213

9. SPONSORING iMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

DARPA

11. SUPPLEMENTARY NOTES I

12a. DISTRIBUTION, AVAiLABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
Distribution unlimited

13. ABSTRACT (Maxtmuj 2rC0 woras)

The IR-RAT was developed as the result of a need to remotely control computers. It is a microcontroller based infrared
remote control interface. This document describes its design and operation so that it might be used or altered for use in
the future.

14. SUBJECT TERMS 15. NUMBER OF PAGES

31 pp
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unlimited unlimited unlimited munitned i

""1 7 ,•-,-.- "- .--. .- - ;

TABLE OF CONTENTS

List of Figures 5

Abstract 7

1.0 Introduction 9

1.1 Conventions 9

2.0 Hardware design 10

2.1 Microcontroller 10

2.2 Memory 10

2.3 Serial Interface 10

2.4 Power 11

2.5 Reset Switch 11

2.6 Power Indicator 11

2.7 Infrared Receiver 11

2.8 Infrared LED 11

2.9 Jumpers 12

2.10 Misc. 12

3.0 Software (Firmware) design 13

3.1 Current Version 13

3.2 Infrared Signal Format 13

3.3 Misc. 14

Appendix A - Schematic Diagrams 15

Appendix B - Connector Diagrams 19

Appendix C - Single Chip Mode Board Modification 20
Appendix D - Source code for EPROM ready version 21

Imaging Systems Laboratory IR-RAT -3

Imaging Systems Laboratory IR-RAT .4

List of Figures

Figure 1. IR Representation of character A

Figure A-1. Schematic Diagram - Microcontroller

Figure A-2. Schematic Diagram - Memory

Figure A-3. Schematic Diagram - I/O

Figure A-4. Schematic Diagram - Power

Figure B-1. Modular Jack Diagram

Figure C-1. Single Chip Board Modification

Accesion For

NTIS CRA&I
DTIC TABUnannounced FjE3

Justification

By
Disri uýtion

Availability Codes
Dist Avail and /or

Special

DTIC QUALITY [NCIITCTED 5

Imaging Systems Laboratory IR.RAT .5

Imaging Systems Laboratory IR-RAT -6

ABSTRACT

The IR-RAT was developed as the result of a need to remotely control computers. It is a

microcontroller based infrared remote control interface. This document describes its design and

operation so that it might be used or altered for use in the future.

Imaging Systems Laboratory IR-RAT -7

Imaging Systems Laboratory IR-RAT -8

IR- RAT

InfraRed Remote Activity Transceiver

1. Introduction

The IR RAT was developed and designed at Carnegie Mellon as the result of a need to use

an [R remote control to operate computer software on several platforms. Therefore, the computer-

RAT interface was made to be as simple as possible to allow for the most flexible use among

different computers. The design and code information is publicly available. The end result of the

design is a small box with the following features...

- Motorola 6811 microcontroller

- 8k x 8 EPROM for code and data storage

- Space for 8k x 8 RAM for software development

- 40 Khz carrier based JR receiver

- IR-LED capable of transmitting up to a 60 Khz carrier

- Standard RS-232 serial interface

- Powered from a 9V DC adaptor

The intended use for this box is to act as an IR remote control interface for any computer.

It was designed to teach a learning remote a set of commands which, when sent by the learning

remw-te, would cause a command to be sent to the host computer via the serial port. While this is

the application for which the RAT is programmed, it could conceivably be used for a wide variety

of applications. These include control by any 40 Khz carrier based IR remote control and control

of virtually any IR remote capable device.

This document is intended to explain the design and implementation of the RAT so that

others can understand its functionality and possibly adapt it to meet their own needs.

1.1 CONVENTIONS

Throughout this manual figures which represent hexadecimal values will be preceded by a

$, values which represent binary values will be preceded by a %, and decimal values are not

imaging Systems Laboratory IR-RAT -9

preceded by any character.

2. Hardware design

2.1 MICROCONTROLLER

The IR RAT is based upon the Motorola 6811 family microcontroller. These are fairly

general purpose 8-bit microcontrollers that are readily available. Most of the 6811 microcontrollers

that are available in a 52 pin PLCC or ceramic quad pack are useable. For development, the

MC68HCl1A8FN1 was used to take advantage of the built in buffalo monitor that aided in

development and debugging. For final production, a less expensive MC68HCI 1AOFN is used, as

there is no need for internal EEPROM or masked ROM. In volume a masked ROM or EPROM

version of the 6811 would be most suited as the code could easily fit in the 8 to 12 kBytes of ROM

available. This eliminates the need for external support components as well as simplifying

production.

2.2 MEMORY

On the IR-RAT board there are provisions to support one 8k x 8 EPROM and one 8k x 8

static RAM. The EPROM used is a 2764 or compatible unit in a 600 mil wide DIP package. The

EPROM is assigned to the address range $EOOO-$FFFF in the 681 Is addressing space as this

corresponds to the ROM space that is used for most int'rnal ROM/EPROM configurations on the

6811.

Space is provided on the IR-RATs PC Board for a 300 mil wide 8k x 8 static RAM. This

RAM was intended for software development only as it is physically mounted underneath the

EPROM. The RAM is assigned to the $6000-$7FFF address space.

2.3 SERIAL INTERFACE

The IR RAT is designed to communicate with the host computer via the serial port. This is

pivotal in allowing the device to be used with as many different systems as possible. The RS-

Imaging Systems Laboratory IR-RAT -10

232 signJs are generated and received through the built in serial communications interface on the

6811 with signal levels supplied by a Maxim MAX-232 driver. The modular jack on the IR-

RAT conducts the RS-232 signals. See the attached diagrams for the pinout of the modular jack.

2.4 POWER

Power can reach the IR RAT in one of two ways. First, the DC coaxial jack can be used to

attach a 9V DC adaptor with a positive center conductor. Second power can be supplied through

the outer two conductors in the modular phone jack. As shown in the schematics, each of these

power sources pass though separate barrier diodes to prohibit any hr -mful connections. For pinouts

of the modular jack see the attached diagrams.

2.5 RESET SWITCH

There is space on the IR-RAT board adjacent to the modular connector for a reset pushbutton

switch, S 1. This is a normally open push-button switch that resets the microcontroller. The switch

is debounced through the reset controller, U7. This switch appears only on development units, as

final production units should not need a reset circuit. The software should be robust enough to

avoid the need for an external reset.

2.6 POWER INDICA TOR

LED D4, and resistor R5 are only necessary on development units to indicate presence of

power.

2.7 INFRARED RECEIVER

The IR receiver is the Sharp GP1U52Y, which is a receiver/demodulator that detects the

presence of a 40 Khz carrier. This connects to port A, bit 2, which is also the. Timer Input Capture

1. This signal has a high resting state and becomes low only when a 40 Khz carrier is detected.

2.8 INFRARED LED

Dl is an IR LED that is designed to transmit IR signals. It is controlled directly by the

output of I/O port A, bit 3. As a result, it can be controlled by the timer output compare 5 (TOC5).

Imaging Systems Laboratory IR-RAT -II

When this value is high, the LED is on. For development, resistor R3 should be approximately 100

ohms to limit the current that the LED can draw. When it is shown that the LED will operate only

at some reduced duty cycle (i.e. 50%) then a lower value can be used (approx. 50 ohms) to allow

for a more powerful IR signal. This should occur only when the program is sure not to cause the

LED to stay on for extended periods (ai the Motorola buffalo monitor does).

2.9 JUMPERS

There are five jumpers on the IR-RAT PC board. Jumper 1 (the left most jumper) is used

to place the chip in expanded multiplexed mode (jumper removed) or -n special test mode (jumper

present). In order to operate the microcontroller in single chip modc, hold the MOD A line low.

This is accomplished by cutting the trace which connects jumper 2 to the pull up resistor network,

and reattaching the non-grounded side of the jumper to the pad on the pull up resistor network that

connects to MOD A (Pin 5). Then by putting ajumper across jumper 2, and leaving jumper 1 vacant

the microcontroller is placed in single chip mode. See the attached diagram for the procedure.

The remaining four jumpers are attached to port E, pins 0-3. Pin 3 corresponds to jumper

5, pin 2 to jumper 4, pin 1 to jumper 3, and pin 0 to jumper 2. These are provided to allow for

jumper selectable options. Note that use of the Motorola buffalo monitor requires that jumper 5 be

installed. If it is not in place the buffalo monitor will attempt to start execution from the EEPROM

at address $B600.

2.10 MISC

If an EPROM version of the 6811 (i.e. 68HC71 1) is available and desired for use, it is

possible to reduce the part count on the board significantly. Assuming that there is no need for the

RAM, the address decoding and bus latching chips, U2 and U3 can be eliminated. This is also

possible if a ROM masked version of the microcontroller is manufactured.

The PC boards were fabticated by Photobeam/Brookside in Waltham, Massachusetts. Most

of the other parts are commonly available from a variety of electronic vendors. The only specialized

part was the Sharp IR received/demodulator.

Imaging Systems laboratory IR-RAT -12

3. Software (Firmware) Design

3.1 CURRENT VERSION

The current version of the firmware available for the IR-RAT performs two very simple

functions. The first is that it gets an ASCII character from the serial port and then encodes and

transmits that character as an IR signal. This is the transmitter portion of the code. The second

function is it receives IR signals from a remote control and if they are in the appropriate format,

decodes the ASCII character the signal represents and send that character over the serial port to the

host computer. This is the receiver portion of the code. While the code is fairly self explanatory,

some brief explanation is required.

3.2 INFRARED SIGNAL FORMAT

The IR signal is created by turning the 40 Khz carrier on and off for different periods of time.

The periods of time are measured by the number of cycles of the 40 kHz carrier. The current

encoding scheme uses two values for the periods, these are 200 cycles (long) and 20 cycles (short).

By using an order of magnitude difference, determination of which value is correct becomes trivial.

IR signals from the RAT are composed of four parts, the sync, the header, the data and the

inverted data. The sync is a long on pulse. This allows the receiver to "wake up" and the

microcontroller time to prepare for receiving data. Once the sync pulse has been sent, all of the

remaining periods of carrier presence (when the IR LED is flashing) are short, and the data is

determined by the length of time that the LED is not flashing. Therefore a short is considered to be

20 cycles of no IR activity followed by 20 cycles of 40 kHz carrier and a long is 200 cycles of IR

inactivity followed by 20 cycles of 40 kHz carrier.

After the sync pulse is sent, a header is sent to identify the signal as a valid RAT signal. This

is a short-long-short-long-short pattern. If the decoder does not see this pattern after it receives the

sync, it assumes that the IR signal is from some other source and waits for the next signal.

Next the eight bits of data representing the ASCII character are sent from least to most

significant. A one is represented by a short signal and a zero is represented by a long signal.

Following this the data is sent again, except this time the representation is inverted with a one

Imaging Systems Laboratory IR-RAT -13

represented by a long signal and a zero represented by a short signal. By using this method, all

characters sent will take exactly the same amount of time. An example of the IR signal representing

the letter A (%01000001) is shown in figure 1.

Sync Header 110000010 100000100

Normal Character Inverted
Character

Figure 1 - IR Representation of character A (%01000001). Note that this is not to scale. In reality long and short
times vary by a factor of 10.

3.3 MISC

There are a few notes that need to be made about the current firmware for the RAT. First

it is interrupt based. When the program initializes it sets registers appropriately and then waits for

an interrupt to occur, either from the serial communications interface or the timer input capture I.

Second, the IR RAT depends on relocating the internal RAM to location $1000 and the

configuration registers to start at $0000. This is done to permit the tight loops necessary to generate

a 40 kHz carrier using a 2 MHz crystal and the internal timers on the 6811.

Finally, the program operates in batch mode. When transmitting the program computes all

of the timing in advance and then starts the transmitting. While receiving the microcontroller

receives all the timer data and stores it for processing after a sufficient amount of time has passed

without IR activity.

Imaging Systems Laboratory IR-RAT .14

cc -

E
<

w. I

oa j I ',

I w'
sa8 8s

c ~ ~ ~ ~ ~ F ILdf IL0 L LI LT T I

- F- ~ <

00

mi~~~~oD o2 a. Ia.I I LL

I-8I

_

II

X
>

1~ c'J

CDI

CC E

C~CC

-2m

coco 0""

CD)

o z
ND

E c)
Z :

cv) m

oo co

C) CL

(D)

3:

"CD 0
GoI

0E

U.

zz

0

F--

t-:-C-

Appendix B - Connector Diagrams

Black - AUX POWER IN
xRed - T.XD

Green - RXD

fYellow

- GNID

Figure B-1. Front view of the modular jack on the IR-RAT.

The other end of the modular plug wire can attach to a female dB-25 connector for use with most

PCs. The wiring connections are as follows.

Modular Cable dB-25

YELLOW Pin 7

RED Pin 3

GREEN Pin 2

BLACK Not Connected

Additionally, for prototyping with Motorola's Buffalo monitor pins 5,6,8 and 20 should be shorted

together.

Imaging Sy•tems Laboratory IR-RAT -19

Appendix C - Single Chip Mode Board Modification

0. o

* 0O

0 oto

0 0

0

Figure C-i. This shows the necessary board modifications to allow
jumpers 1 and 2 to control MOD B and A respectively.

Imagiag Systems Laboratory IR-RAT -20

Appendix D - Source Code for EPROM Ready Version

* IR-RAT SOURCE CODE - EPROM VERSION of ratv2.s
* BY: William H. Sands IV whs@j.gp.cs.cmu.edu
* Created February 26, 1992
* Copyright (c) 1993 - Carnegie Mellon University

* Following is the source code for the IR-RAT. This version
* is a complete version that can be compiled and loaded directly
* into EPROM. It is designed for EPROM at $E000 - $FFFF.

* Constants

BDRATE EQU $30 $31 for 4800, $30 for 9600
TIMEDELAY EQU 1 mS TO DELAY
LONG EQU 200
SHORT EQU 20
BREAKPT EQU 100

* Memory map alias

RAMBS EQU $1000 start of internal ram
EXRAMBS EQU $6000 start of external ram
REGBS EQU $0000 start of registers
INTVECBS EQU $FFD6 where interesting int vectors start

* Registers

PORTA EQU REGBS+$00 I/O port A
OCIM EQU REGBS+$OC
OClD EQU REGBS+$OD
TCNT EQU REGBS+$OE timer count
TIC1 EQU REGBS+$10 timer input capture 1
TOCI EQU REGBS+$16
TOC5 EQU REGBS+$1E
TCTL1 EQU REGBS+$20 timer control 1
TCTL2 EQU REGBS+$21 timer control 2
TMSKI EQU REGBS+$22 timer mask 1
TFLG1 EQU REGBS+$23 timer flag 1
TMSK2 EQU REGBS+$24 timer mask 2
BAUD EQU REGBS+$2B
SCCR1 EQU REGBS+$2C
SCCR2 EQU REGBS+$2D
SCSR EQU REGBS+$2E
SCDR EQU REGBS+$2F
HPRIO EQU REGBS+$3C highest priority interrupt
INIT EQU $103D
OPTION EQU REGBS+$39

*Internal memory allocations

STACK EQU RAMBS+$40

Imaing Systems Laboratory IR.RAT .21

LOWMEM EQU RAMBS+$00

HIMEM EQU RAMBS+$FF

ORG $EOOO

copyrt FCC 1(c) 1993 Television Computer Company.'
FCC 'All rights reserved worldwide.'
FCC By.: W.H. Sands IV whsgj.gp.cs.cmu.edu"
FCC 'February 26, 1993'

***************** ************ *** *************************** *** ****** *

* RESET VECTOR - This is where eprom execution begins on any reset
* COP/CLOCK/EXT RESET/PWR UP etc.

RESET LDAA #$13 Set up sys configuration options (OPTION)
STAA OPTION A/D power off - LEVEL IRQs - is COP TIMEOUT
LDAA #$10 Set RAM to $1000 and Registers to $0000
STAA INIT
LDAA #$0 Mask all timer interrupts
STAA TMSK2
LDS #STACK Set the stack pointer
JSR ONSCI Set up the SCI Port
JMP main Start execution
ERRI JMP ERRI

UNKINT LDAA #$50 This routine is the unknown interrupt
TAP handler. Simply hangs the machine.
STOP (necessary)
JMP UNK_.INT

* PORTIONS OF OUTA, OUTSCI and ONSCI ARE FROM THE 6811 BUFFALO MONITOR V2.5

OUTA PSHA Store variables, and put the
PSHB character out on the SCI
PSHX
JSR OUTSCI
PULX
PULB
PULA
RTS

OUTSCI BSR OUTSCI2 Puts a character out on the SCI
CMPA #$OD
BNE OUTSCI1
LDAA #$OA
BRA OUTSCI2

OUTSCII CMPA #$OA
BNE OUTSCI3
LDAA #$OD

OUTSCI2 LDAB SCSR
BITE #$80
BEQ OUTSCI2

Imaging Systems Laboratory IR-RAT -22

ANDA #$7F
STAA SCDR
RTS

ONSCI LDAA #BDRATE Initalizes the SCI (serial port)
STAA BAUD
LDAA #$00
STAA SCCRI
LDAA #$OC
STAA SCCR2
RTS

* START OF ACTUAL IR RAT CODE *

main SEI
LDS #STACK Reset stack pointer
LDAA SCCR2 Turn on serial RDRF IRQ
ORAA #$20
STAA SCCR2
LDAA #$13 Make sure level sensitive IRQ
STAA OPTION
CLR TCTLI Discon. output pins from timer
CLR PORTA Make sure IR LED is off
LDAA #$30 Set input capture 1 to trigger
STAA TCTL2 on rising edge of signal
LDAA HPRIO Set highest priority input to be
ANDA #$FO timer input capture 1
ORAA #$08
STAA HPRIO
LDAA #$04 Un-mask timer input capture 1
STAA TMSK1
STAA TFLGI
LDX #stoend Point to where to store data

loop.temp CLI
WAI Go into waiting until an interrupt
JMP main

RECEIVER ****
"* This module receives the IR signal.
"* When the IR receiver is activated, it causes an interrupt which
"* forces execution to begin at timer._irq. It will continute to look
"* for data until it has filled memory, or it has lapped the timer.

timer_irq LDX #stoend Point to where to store data
LDD TICM Get Timer Event Data
STD O,X
STD TOCM Reset the timeout timer
LDAA #$84 Reset the interrupt flag
STAA TFLGI
LDAB #$80 Leave only the timeout IRQ
STAB TMSK1 unmasked

Imaging Systems Laboratory IR-RAT .23

CLI
timer_irql DEX

DEX
CPX #storl Test for out of memory
BLE timeout

irqloop BITA TFLG1 Tight loop to check for IR
BEQ irqloop activity
LDD TIC1 Get Timer Event Data
STD 0,X
STD TOCI Reset the timeout timer
LDAA #$04 Reset the IR activity flag
STAA TFLG1
BRA timer_irql

timeout BRA timeout Endless loop for timing out

* This interrupt routine is called when the timeout timer has lapped with
* no IR activity. This is the post processsing routine

timeout-irq LDAA #$00 Mask all timer events from IRQ
STAA TMSK1
LDAA #$80 Reset Timeout flag
STAA TFLG1
STX point Store the end of data
JSR findfreq Determine the freq of signal
JSR on_off Calculate the on/off cycles
JSR recog Perform recognition on signal
PULX Pull this interrupt off the
PULX stack
PULX
PULX
PULA
PULA Get CCR from stack
ORA #$l0 Set Interrrupt bit
PSHA Put CCR back on stack
LDX #main Hardcode a return to main
TSY
STX 7,Y
RTI Go back to main

"* Since we are dealing with a fixed frequency, this simply says that the
"* frequency if 50 cycles, which on a 2 MHz micro is 40 kHz.

find_freq LDX #$0032
STX freq
RTS

"* This routine handles computing the values that represent the series
"* of on/off cycles. Like the actual timer data, the on/off frequency
"* values are stored from high to low memory. They are 16 bit values
"* that terminate with a zero value. They represent the number of cycles
"* that the signal is alternatively on and off.

Imaging Systems Laboratory IR-RAT .24

onoff LDY #stoend Point to start of data
STY count
DEY
DEY

on_off._loop CPY point Check to see if were at the end
BLE finis
LDD 0,Y Find the difference between the
SUBD 2,Y current value and the next.
DEY Goto the next timer event
DEY
LDX freq Determine the number of cycles that
IDIV the difference represents
LSLD
CPD freq Perform rounding of the number of
BLT no_round cycles
INX

no_round PSHY
LDY count Store the results
STX 0,Y
DEY
DEY
STY count
PULY
JMP on_off_loop

finis LDX #$0000 When were done, store a 0000 as a
LDY count tail
STX O,Y
RTS

** This is the ending routine for recog. Needs to be here so that
** branches can access it.

enddelay LDX #TIMEDELAY DELAY FOR X mS
delaybit LDY #199
delaybit_l LSLD

DEY
BNE delay_)bit_l
DEX
BNE delay-bit
RTS

* This is the recognition routine that determines if this is a IR-RAT
* signal and if it is sends the ASCII character over the serial port.

recog LDX #stoend
LDD O,X
CPD #BREAKPT First check from a long on pulse
BGT no_end_here
JmP end_delay

no_enO_here DEX

Imaging Systems Laboratory IR-RAT -25

DEX
JSR get_next
BGT end_delay
JSR get_next
BLT end_delay
JSR get_next
BGT end_delay
JSR get_next
BLT enddelay
JSR get_next
BGT enddelay
CLRA
CLRB
CLR smal No errors
LDY #$0009

firstchar LSRA Get first copy of the character
ABA
PSHA
JSR getnext_2
PULA
BLT first-short
CLRB
BRA firstlong

firstshort LDAB #$80
first_long TST smal

BNE enddelay Didn't get the whole first char
DEY
BNE first_char
STD point Temp storage for first character
CLR cGunt Temp storage for parity error
JSR compparity
CMPB point+l Check parity that was in B
BEQ nopar-error
LDAA #$Oi Record parity error on 1
STAA count

nopar_error CLRA
CLRB
LDY #$0009

second_char LSRA Get second copy of the character
ABA
PSHA
JSR get_next_2
PULA
BGT seconclong
CLRB
BRA secondshort

second_long LDAB #$80
second_short TST smal

BNE par_2_err
DEY
BNE second-char
STD freq temp storage for second character

Imaging Systems Laboratory IRRAT -26

JSR comp_.parity
CMPB freq+l Check parity that was in B
BEQ nopar_2_err

par_2_err TST count
BNE end-delay.j both have parity errors
LDD point second only has parity error
BRA print_it

nopar._2_err LDD freq Get the second copy of character
TST count
BNE print_it First only has parity error - #2
CMPA point Check first and second characters
BNE end-delay-j Characters are not same

print_it JSR OUTA
enddelayj JMP end-delay

get_next LDD OX Gets the next time value, and
BEQ end_found checks to see if its at the end
DEX of the times
DEX
DEX
DEX
CPX #storl
BLT end_found
CPD #BREAKPT
RTS

endfound PULX
JimP enddelay

get_next_2 LDD OX Gets the next time value, and
BEQ endfound_2 checks to see if its at the end
DEX of the times
DEX
DEX This version if for the bit checking
DEX
CPX #storl
BLT end_found_2
CPD #BREAK_PT
RTS

endfound_2 LDAA #$FF
STAA smal Indicates truncated sig
RTS

compDparity LDY #$0008 Computes the actual parity of A and
CLRB places it in the MSB of B to

parity-loop LSLA return
BCC noparity
INCB

no-parity DEY
BNE parityloop
ANDB #$01
LDY #$0007

par_shift LSLB

Imaging Systems Laboratory IR-RAT .27

DEY
BNE parshift
RTS

* TRANSMITTER

serial_irq LDAB SCSR
LDAA SCDR
STAA point Temp holder for character
BITB #$20
BEQ end_serial
JSR compparity
STAB freq Temp holder for parity
JSR computesig
JSR findin_freq
JSR flash

end_serial PULA Get CCR from stack
ORA #$10 Set Interrrupt bit
PSHA
LDX fmain Hardcode a return to main
TSY
STX 7,Y
RTI

compute-sig LDX #stoend
LDY #LONG Store long on pulse
STY O,X
DEX
DEX
LDY #SHORT
JSR storepulse
LDY #LONG
JSR storepulse
LDY #SHORT
JSR storepulse
LDY #LONG
JSR store-pulse
LDY #SHORT
JSR storepulse
LDAA point
LDAB #$08 Store first copy character

first_send LDY #SHORT
LSRA
BCS first_1_shrt It's a one (short)

first-l-ing LDY #LONG It's a zero (long)
first_l_shrt JSR storepulse

DECB
BNE firstsend
LDY #SHORT

Imaging Systems Laboratowy IR-RAT -28

TST freq
BNE con_p_first It's a one (short)
LDY #LONG It's a zero (long)

con-p.first JSR store-.pulse
LDAA point
LDAB #$08 Store second copy character

second_send LDY #LONG
LSRA
BCS consecond It's a one (long)

second_l_ing LDY #SHORT It's a zero (short)
consecond JSR storepulse

DECB
BNE second_send
LDY #LONG
TST freq
BNE conp_.second It's a one (long)
LDY #SHORT It's a zero (short)

con-p-second JSR store-pulse
LDY #$0000
JSR storepulse

find_in_freq LDX #$0032
STX freq
RTS

flash LDAA #$00
STAA TMSK1 turn off interrupts/etc
STAA TCTLI turn off control to port

init_flashing LDD TCNT Give some time to start
ADDD #$100
STD TOC5
CLR PORTA turn off LED
CLR OClM turn off OCI
CLR OCID
LDAA #$01
STAA TCTLl Toggle on OC5
LDAA #$F8 Reset any interrupts pending
STAA TFLG1
LDX #stoend
STX point
LDD freq
LSRD
STD smal

carrier on LDY O,X get first on val
BEQ done_flash
DEX
DEX
STX point

reset_on LDX TOC5
LDAB smal+1
LDAA #$08

on_flash BRCLR TFLG1 #$08 on-flash

Imaing Systems Laboratory IR-RAT .29

ABX
STX T0C5
AEX
STAA TFLGl

of f..f lash ERCLR TFLG1 #$08 of f~flash
STX T0C5
STAA TFLGl
DEY
ENE on_flash
CLR TCTL1 disconnect timer from pin

LDX point
LDD O~X
EEQ done_flash
LDA freq+l
NEIL
STD Count
LDD O,X
LDB freq+l
MUL
TEA
CLRB
ADDD count
SUED sinai
ADDD TOC5
STD TOC5
LDAA #$08
STAA TFLG1
LDAA #$Ol
STAA TCTL1
DEX
DEX
STX point
ERA carrier_on

done-flash CLR TCTL1 make sure interrupts are taken
CLR PORTA care of and LED off before return

CLR TMSK1
RTS

store~pulse STY O,X
DEX
DEX
LDY #SHORT
STY OX
DEX
DEX
RTS

SInterrupt Vectors
ORG INTVECES

FDE serial...irq serial_irq SCI Serial System

FDE UNK-INT SPI Transfer Complete

Imaging Systems Laboratory IR-RAT -30

FDB UNKINT Pulse Accumulator Input Edge
FDB UNKINT Pulse Accumulator Overflow
FDB UNKINT Timer Overflow
FDB UNKINT Timer Output Compare 5
FDB UNKINT Timer Output Compare 4
FDB UNKINT Timer Outout Compare 3
FDB UNKINT Timer Output Compare 2
FDB timeout_irq Timer Output Compare 1
FDB UNKINT Timer Input Capture 3
FDB UNKINT Timer Input Capture 2
FED timer_irq Timer Input Capture 1
FDB UNKINT Real Time Interrupt
FDB UNILINT -IRQ
FDB UNKLINT -XIRQ
FDB UNKLINT SWI
FDB UNKLINT Illegal Opcode Trap
FDB RESET COP Failure
FDB RESET COP Clock Monitor Fail
FDB RESET Reset Vector

* Program RAM allocations ***

ORG STACK+2
smal FCB 0

FCB 0
freq FCB 0

FCB 0
point FCB 0

FCB 0
count FCB 0

FCB 0
storl FCC ' 0

ORG HIMEM-l
stoend FCC '

END

Imaging Systems Laboratory IR-RAT .31

